pici

pici

Tools for totally & partially identifiable causal inference in Python.

# Install
pip install pici

# Quickstart
import pici
print(pici.__version__)

Why pici?

Project updates & work done

Theoretical Background

The partial identifiable causal inference algorithm used in pici is based on the following work:

J. P. Arroyo, D. Mauá, J. G. B. Rodrigues, D. A. E. Lawand, J. Lee, R. Marinescu, A. G. Gray, E. R. Laurentino, and F. Cozman, “Multilinear and Linear Programs for Partially Identifiable Queries in Quasi-Markovian Structural Causal Models,” CAR @ UAI 2025 Workshop, 2025.
📄 View on OpenReview
BibTeX
@inproceedings{arroyo2025multilinear,
  title     = {Multilinear and Linear Programs for Partially Identifiable Queries in Quasi-Markovian Structural Causal Models},
  author    = {Arroyo, João Pedro and Mauá, Denis and Rodrigues, João Gabriel Barreto and Lawand, Daniel A. E. and Lee, Junkyu and Marinescu, Radu and Gray, Alexander G. and Laurentino, Eduardo Rocha and Cozman, Fabio},
  booktitle = {CAR @ UAI 2025 Workshop},
  year      = {2025},
  url       = {https://openreview.net/forum?id=aUPT1kEiwP},
  note      = {Poster}
}

Acknowledgments

ICTI & C2D: We thank the Instituto de Ciência e Tecnologia Itaú (ICTI) for providing key funding for this work through the C2D – Centro de Ciência de Dados at the University of São Paulo.

Disclaimer: Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of Itaú Unibanco and the Instituto de Ciência e Tecnologia Itaú.

Data & Ethics: All data used in this study comply with Brazil’s General Data Protection Law (Lei nº 13.709/2018 – LGPD).

C4AI, FAPESP & IBM: The authors also thank the Center for Artificial Intelligence ( C4AI-USP ) and acknowledge the support from the São Paulo Research Foundation (FAPESP grant #2019/07665-4) and from the IBM Corporation.